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Abstract:  In this paper we present charged particle motion in rotating quadrupole field. Quadrupole field configuration is used in 

many practical systems, e.g., in charged particle accelerator components for focusing of charged particle beam or in ion traps. 

Rotation of quadrupole field with time introduces a coupling of transverse dynamics. Study of such dynamical system throws light 

in to the details. 

 

Index Terms –Rotating Quadrupole Potential, Brouwer’s Equation. 

I. INTRODUCTION 

Qudrupole configuration of electric field or magnetic field is used in many applications, particularly in the field of charged particle 

accelerators or ion traps [1-5]. In charged particle beam transport systems, electrostatic of magnetic quadrupoles are used to keep the 

beam confined in transverse direction or to focus the beam. Inherently, a quadrupole field configuration cause focusing in one 

transverse plane and defocusing in the other transverse plane. A sequence of focusing and defocusing quadrupole field causes 

effective focusing of beam in both the transverse planes. Strong focusing, i.e., alternating focusing and defocusing fields, gains new 

properties suitable for beam line application by exploring field rotations about the optic axis. Literatures are found on electric or 

magnetic quadrupoles rotating helically in space around the optic axis [6, 11]. Field rotating in time, rather than space, has also been 

discussed and it has been suggested that such strong focusing method can effectively be explored in beam line applications, 

particularly in radiofrequency quadrupole accelerator system [12].  

II. Rotating Quadrupole potential 

Keeping in mind the particular application of charged particle beam transport system we use a coordinate system with a 

preferential longitudinal axis (z) along the beam transport line. We use cylindrical coordinate system (𝜌, 𝜑, 𝑧) to evaluate the scalar 

potential 𝜓 fromd which the electric field can be derived by taking space gradient. In the limit where transverse dimension of the 

device is much less than the longitudinal dimension, as it is generally in case of a beam transport device like electrostatic 

quadrupoles, the scalar potential follows the two dimensional Laplace equation in transverse (𝑥, 𝑦) plane 

∇2ψ = 0                    (1) 

The solution of this equation is given by 

ψ(𝜌, 𝜑) = ∑ 𝑎𝑛𝜌
𝑛 cos(𝑛𝜑) + 𝑏𝑛𝜌

𝑛 sin(𝑛𝜑)

∞

𝑛=1

                      (2) 

Electric field is given by the gradient of scalar potential, 

𝐸 = −∇ψ                      (3) 

Here different values of 𝑛 represents different field forms, e.g., 𝑛 = 1 𝑎𝑛𝑑 2 represent dipole and quadrupole field forms 

respectively. The quadrupole potential is given by 

ψ
2
(𝜌, 𝜑) = 𝑎2𝜌

2 cos(2𝜑) + 𝑏2𝜌
2 sin(2𝜑) 

It is rather easier to visualize the motion in Cartesian coordinate system,   

ψ
2
(𝑥, 𝑦) = 𝑎2(𝑥

2 − 𝑦2) + 2𝑏2𝑥𝑦                      (4) 

𝐸⃗ (𝑥, 𝑦) = −
𝜕𝜓2

𝜕𝑥
𝑖̂ −

𝜕𝜓2

𝜕𝑦
𝑗̂ = (−2𝑎2𝑥 𝑖̂ + 2𝑎2𝑦 𝑗̂) + (−2𝑏2𝑦 𝑖̂ + 2𝑏2𝑥 𝑗̂)                    (5) 

We consider the motion of a particle with charge +𝑞 and mass 𝑚, moving along z-axis with velocity 𝑣  under the influence of 

this quadrupole electric field. The electric force, given by 𝑞𝐸⃗ , for 𝑎2 ≠ 0 term is having a component along −𝑖̂ direction that is 

proportional to 𝑥 and a component along 𝑗̂ direction that is proportional to 𝑦. This is the normal quadrupole field, giving focusing 

force in 𝑥-plane and defocusing force in 𝑦-plane. The electric force for 𝑏2 ≠ 0 term is having a component along −𝑖̂ direction that 

is proportional to 𝑦 and a component along 𝑗̂ direction that is proportional to 𝑥. This force gives rise to coupling of 𝑥 and 𝑦 motion. 

It is obvious that the second term in equation (4), when transformed in a coordinate (𝑥 ′, 𝑦′) rotated in transverse plane by angle 𝜃, 

is given by 

2𝑏2𝑥𝑦 = 𝑏2 (𝑥 ′2 − 𝑦′2) sin 2𝜃 − 𝑥 ′𝑦′ cos 2𝜃                    (6) 
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In case of 𝜃 = 𝜋/4, 2𝑏2𝑥𝑦 = 𝑏2 (𝑥 ′2 − 𝑦′2) is the same form as the normal quadrupole potential. Therefore, 𝑏2 ≠ 0 term of field 

is called skew quadrupole field. 

Generally, in static quadrupole devices, one of these field configurations is devised in a particular unit, say normal configuration 

with focusing in 𝑥-plane. By changing the polarity of the poles, the unit can act as defocusing in 𝑥-plane. A sequence of focusing 

and defocusing units give a total result of focusing in both planes without coupling the motion of transverse planes. 

 

Figure 1: Electrostatic quadrupole potential 𝑎2(𝑥
2 −

𝑦2). The potential is to be rotated around z-asis to get 

a rotating quadrupole field. 

 

Figure 2. Equipotential contours and electric field of a 

normal-quadrupole configuration. The dotted figures 

schematically represent the poles. 

 

Figure 3: Equipotential contours and electric field of a skew-quadrupole configuration. The dotted figures schematically shows 

the approximate poles. 

Now, in this paper, we consider the case where the quadrupole field configuration rotates with time in transverse plane. That 

means the scalar potential function is to be rotated around the 𝑧-axis. Figure 1 shows the quadrupole potential 𝑎2(𝑥
2 − 𝑦2), is to be 

rotated around z-asis to get a rotating quadrupole field. Figure 2 shows the equipotential lines and electric field configuration of 

ideal normal quadupole configuration. Ideally, the profile of the poles needs to be hyperbolic, following the equipotential contours. 

But practically metallic poles of finite transverse dimensions can be approximated to generate dominant quadrupole potential in the 

good-field-region near the z-axis where the charge particle beam travels. In figure 2, the poles are shown schematically by dotted 

shapes. The poles at 𝜃 = 0° and 180° are at +𝑉 potential and the poles at 𝜃 = 90° and 270° are at −𝑉 potential. The skew 

configuration 2𝑏2𝑥𝑦 can be obtained just by rotating the poles by 𝜃 = 45°, as shown in figure 3. 
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Figure 4: Potential and field pattern at different instance t1, t2, t3, ..., t12, where 0 < 𝜔𝑡𝑛 < 𝜋 .  

A quadrupole potential rotating with time in transverse plane can be generated with a time varying normal and skew 

configuration superimposed on each other. The time varying potential function can be written as, 

ψ(𝑥, 𝑦, 𝑡) = 𝑎2 cos(𝜔𝑡) (𝑥2 − 𝑦2) + 2𝑏2 cos(𝜔𝑡 + 𝜑0)  𝑥𝑦                        (7) 

Here time varying sinusoidal potential with angular frequency 𝜔 = 2𝜋 𝑇⁄ , 𝑇 being the time period, has been applied to the poles. 

The sinusoidal potentials applied to normal and skew  sets of poles have a  phase difference of 𝜑0. Figure 4 shows the potential and 

field pattern at different instances of time 0 < 𝜔𝑡𝑛 < 𝜋. In these plots we have considered 𝑎2 = 1, 2𝑏2 = 1 and 𝜑0 = 𝜋/2. 

III. Dynamics and Stability of Motion 

The potential and the field, for 𝜑0 = 𝜋/2, are as follows respectively, 

ψ(𝑥, 𝑦, 𝑡) = 𝑎2 cos(𝜔𝑡) (𝑥2 − 𝑦2) + 2𝑏2 sin(𝜔𝑡)  𝑥𝑦 

𝐸⃗ (𝑥, 𝑦, 𝑡) = −(2𝑎2𝑥 cos(𝜔𝑡) + 2𝑏2𝑦 sin(𝜔𝑡))𝑖̂ + (−2𝑏2𝑥 sin(𝜔𝑡) + 2𝑎2𝑦 cos(𝜔𝑡))𝑗 ̂

Force on a charged particle 𝐹 = 𝑞𝐸⃗ (𝑥, 𝑦, 𝑡). Hence the equations of motion are as follows: 

𝑥̈ = −
𝑞

𝛾𝑚0

(2𝑎2𝑥 cos(𝜔𝑡) + 2𝑏2𝑦 sin(𝜔𝑡)) 

𝑦̈ =
𝑞

𝛾𝑚0

(−2𝑏2𝑥 sin(𝜔𝑡) + 2𝑎2𝑦 cos(𝜔𝑡)) 

We may normalize the constants as 
2𝑎2𝑞

𝛾𝑚0
=

2𝑏2𝑞

𝛾𝑚0
= 1, 

𝑥̈ + 𝑥 cos(𝜔𝑡) + 𝑦 sin(𝜔𝑡) = 0                            (8) 

𝑦̈ + 𝑥 sin(𝜔𝑡) − 𝑦 cos(𝜔𝑡) = 0                            (9) 
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(a)  𝜔 = 1.84                                                    (b)  𝜔 = 1.9 

 

(c)  𝜔 = 2                                                           (d)  𝜔 = 3 

Figure 5: Trajectories of charged particle under rotating quadrupole potential. In case of (a) and (b), the motion is unstable; where 

as in case of (c) and (d), the motion is stable or confined in the transverse direction. In case (d) the particle executes a small scale 

circular micro-motion and a large scale circular secular motion. 

Equations (8) and (9) are similar to the well known equations derived by Brouwer (1881-1966) for motion of a particle under 

the influence of a rotating saddle potential, obtained by rotating the graph of 𝑧 = (𝑥2 − 𝑦2)/2 around z axis with angular velocity 

𝜔. The solutions of these equations in parametric form are shown in figure 5. The particle’s motion is unstable for small values of 

< 2 , as shown in case (a) and (b). The motion is stable for all higher values as shown in case (c) and (d). It stable motion, the 

particle executes a prograde precession, i.e., it moves on a stretched curved trajectory that itself rotates in the same sense as the 

rotating field. 

IV. CONCLUSION 

A scheme for rotation of quadrupole potential is investigated mathematically. Transverse dynamics of a charged particle in the 

rotating quadurpole potential is investigated. The equations of motion are similar to the famous Brouwer’s equations for a particle on 

a rotating slippery surface. Parametric plots of numerical solution of the equations show that the motion is confined in transverse 

direction for all higher rotational frequencies. For small frequencies the transverse motion is not stable. In case of stable motion the 

trajectory in transverse plane is a combination of circular micromotion and a prograde precession. 
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